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1 Service de Physique Théorique, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
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Abstract. We present an investigation of the 2D attractive Hubbard model, considered as an effective
model relevant to superconductivity in strongly interacting electron systems. We use both hybrid Monte-
Carlo simulations and existing hopping parameter expansions to explore the low temperature domain.
The increase of the static S-wave pair correlation with decreasing temperature, which depends weakly
on the band filling in the explored temperature range, is analyzed in terms of an expected Kosterlitz-
Thouless superconducting transition. Using both our data and previously published results, we show that
the evidence for this transition is weak: If it exists, its temperature is very low. The number of unpaired
electrons remains nearly constant with temperature at fixed attractive potential strength. In contrast, the
static magnetic susceptibility decreases fast with temperature, and cannot be related only to pair formation.
We introduce a method by which the Padé approximants of the existing series for the susceptibility give
sensible results down to rather low temperature region, as shown by comparison with our numerical data.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 74.25.Dw Superconductivity phase
diagrams – 75.40.Mg Numerical simulation studies

1 Introduction

The study of models of strongly interacting electrons is
very important for the understanding of high tempera-
ture superconductivity. The fundamental mechanism of
this phenomenon has not yet been clearly identified, and
it may be interesting to study effective models, which have
strong local attraction between the electrons. The two di-
mensional attractive Hubbard [1] model is an example of
such a model whose phase diagram as well as physical
properties in the normal non superconducting phase can
be compared to properties of actual superconducting ma-
terials of the high Tc superconductivity class.

The two dimensional attractive Hubbard model is a
conceptually simple model, which at low temperatures is
expected to have a Kosterlitz-Thouless transition [2] into
a superconducting phase, away from half filling. At half
filling the model has further symmetries, which prevents
such a transition. In the absence of magnetic field, the
properties of the model depend on two parameters (apart
from the temperature) namely the coupling constant of
the attractive local interaction U and the chemical poten-
tial µ, measured in units of the coefficient k of the hopping
term. The model is solvable in the free case U = 0 and the
atomic limit k = 0. In the interesting case where both U
and k are different from zero the model can only be studied
through developments around the two solvable cases, high
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temperature series and numerical simulation techniques.
In contrast to the repulsive Hubbard model, with the op-
posite sign of U, the total fermionic determinant (square
of a determinant) is non-negative also for a chemical po-
tential different from zero. Thus the numerical simulations
do not suffer from the sign problem in this case. In fact,
the two models are related by a change of sign in U and
the exchange of chemical potential and magnetic field.

In this paper, using a hybrid Monte-Carlo algorithm,
we perform a detailed numerical study of the model in a
wide range of values of the parameters. The purpose is
first to examine in detail the evidence for a Kosterlitz-
Thouless transition and, if it takes place, to estimate the
critical temperature. This can be done by studying the s-
wave pair-field correlation function, which should diverge
at the transition on an infinite lattice. Another interest-
ing quantity is the magnetic susceptibility, sensitive to the
presence of single electrons as contrast to those bound in
pairs. One may expect the susceptibility to disappear in
the strong coupling limit, where more and more pairs are
formed. However, at fixed U the temperature behavior of
the probability that a site has a single electron and the
behavior of the susceptibility are not the same. Therefore
the behavior in temperature of the susceptibility of the
remnant unpaired electrons is interesting to investigate.
For this latter quantity we make use of the series expan-
sion in k given in reference [3], and with the help of the
Padé approximants method, extrapolate the series to low
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temperatures. We compare the results with our numer-
ical data and show that, at least at small and interme-
diate couplings, rather low temperature may be reached
analytically. If true also in the repulsive case of the Hub-
bard model, where numerical simulations suffer from the
sign problem, series expansion might be interesting to use.
Unfortunately, no such series are available for the pair field
correlator.

There have been some earlier numerical investigations
of the same model [4,5], and we compare our results with
theirs. Some quantitative discrepancies appear in the re-
sults for the pairing correlation, but our main conclusion
on a possible KT transition is insensitive to them. In ac-
cordance with the independence of the data on filling, al-
ready observed [5,6] in the temperature range we study
(T/k > 1/6 for U = 4), no positive evidence for a KT
transition away from 1/2 filling is found from this domain.
Investigating the finite size behaviour of the lowest T data
of [5] away from 1/2 filling, not used in this reference, we
show that the T/k = 0.1 data favour a KT transition, but
that if it exists, its temperature can at most reach ∼0.04,
at variance with the proposed value TKT /k ∼ 0.1 [5].

In Section 2 we define the model, the observables which
we measure and the path integral formalism used for the
numerical simulation. In Section 3 we discuss the algo-
rithm employed, which we have chosen as the Hybrid
Monte-Carlo algorithm. In Section 4 we discuss our data
on the pair field correlation, which is a direct indicator
of a transition into a superconducting phase. In Section 5
we present results for the susceptibility, comparing our
numerical results with analytic results extrapolated from
the series expansion. Section 6, finally, contains a sum-
mary and our conclusions.

2 The model

The model is defined by the Hubbard Hamiltonian

H = −k
∑
〈x,y〉

(
a†xay + a†yax + b†xby + b†ybx

)
− U

∑
x

(
a†xax −

1

2

)(
b†xbx −

1

2

)
− µ

∑
x

(
a†xax + b†xbx

)
, (1)

where x and y are sites on a two dimensional Ns × Ns
square lattice with V = N2

s sites, ax and bx are coordinate
space annihilation operators for spin-up and spin-down
electrons respectively, and k is the nearest neighbor hop-
ping parameter. The coupling U > 0 denotes the strength
of the attractive local interaction and µ is the chemical
potential, defined so that µ = 0 at half filling, i.e. where
the total particle number 〈N〉 = V . Here

N =
∑
x

(a†xax + b†xbx). (2)

We also define the particle number density operator

n =
1

V
N. (3)

The thermodynamics of the model is given by the partition
function

Z = Tr
(
e−βH

)
. (4)

In the simulation we will measure average values of oper-
ators in this ensemble,

〈O〉 = Tr(Oe−βH)/Z. (5)

The basic equal time correlation functions, which give
information about the properties of the model are the
S-wave on site pairing correlation function

P (x− y) =
〈
(a†xb

†
x + bxax)(a†y b

†
y + byay)

〉
, (6)

the correlation function for the magnetization density in
the z-direction, or magnetic susceptibility

χ(x− y) = β
〈
(a†xax − b

†
xbx)(a†yay − b

†
yby)

〉
, (7)

and the charge density correlation function

C(x− y) =
〈
(a†xax + b†xbx)(a†yay + b†yby)

〉
. (8)

The probability that a site is singly occupied is

S1 =
χ(0)

β
· (9)

Furthermore

P (0) = 1− S1 (10)

is the probability of zero or double occupancy.
The correlation function in Fourier space of the quan-

tity E denoted by Ẽ is defined as

Ẽ(q) =
∑
z

eiqzE(z). (11)

An indicator of the diverging correlation length at the
phase transition, which has been used e.g. in [4,5] is

P̃0 ≡ P̃ (q = (0, 0)) . (12)

In the same way, the charge density wave indicator is

C̃(π, π) and the uniform spin susceptibility is given by
χ̃(0, 0).

In absence of a magnetic field h the model is invariant
under SU(2) spin. For µ = h = 0 it is also invariant under
another SU(2) group [7]. This leads to the relation

P (z) = (−)z [C(z)− 1] . (13)

at µ = h = 0.
As described in the next section, our simulation

is based on the Hybrid Monte-Carlo algorithm [8–13].
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We thus need the partition function (4) under the form
of a path integral where the Hubbard Stratonovich de-
composition of the interaction is performed via real con-
tinuous scalar variables, denoted σx,t, where x labels the
lattice sites and t the time slices, t = 1, 2, · · ·Nt. Up to an
irrelevant numerical factor, we get

Z =

∫ ∏
x,t

[dσx,t] e
− 1

2

∑
x,t σ

2
x,t

×

∫ ∏
x,t

[dηx,tdη̄x,t]
∏
x,t

[
dθx,tdθ̄x,t

]
× exp

[
η̄Mη + θ̄Mθ

]
. (14)

The Grassmann variables [η̄, η]x,t (resp. [θ̄, θ]x,t) are asso-
ciated with the creation and annihilation operators for the
spin up (resp.spin down) electron at site x in time slice t.
The fermion matrix is

Mx,t;x′,t′ = −δt−1,t′δx,x′ + δt,t′

{
δx,x′E(x, t)

+
kβ

2Nt

2̂∑
ν̂=1̂

(δx′,x+ν̂ + δx′,x−ν̂)

{
E(x, t) + E(x′, t)

}

+
k2β2

2N2
t

2̂∑
ν̂,ν̂′=1̂

[δx′,x+ν̂+ν̂′ + δx′,x−ν̂−ν̂′ + 2δx′,x+ν̂−ν̂′ ]

}
,

(15)

where E(x, t) is defined as

E(x, t) = exp

[√
Uβ

Nt
σx,t − (U − µ)

β

Nt

]
.

The two equations (14) and (15) follow from a standard
Trotter decomposition. The kinetic part K and the inter-
action part V of the Hamiltonian appear in each time slice
as

exp(−
β

Nt
K)× exp(−

β

Nt
V ),

which is known to reproduce Z and averages like equa-
tion (5) up to corrections of order 1/N2

t (precise state-
ments and references to earlier work can be found in [14]).
We expanded the kinetic factor in powers of β/Nt, keep-
ing only terms relevant at this order, which yields the ma-
trix M as a sparse matrix, hence saving some computer
time. The same goal can be reached by a checkerboard
breakup of the kinetic term (see e.g. [15]). In the latter
case, particle-hole symmetry is exactly respected, while
here it is broken by terms of order 1/N2

t . As we will see
in the next section, we take advantage of this feature by
using 〈n〉 − 1 at zero chemical potential as an indicator
of how large typical O(1/N2

t ) terms may be. As another
check that the values of Nt used are large enough, we also
estimated the effect of further truncating the expansion

of the kinetic term, replacing M equation (15) by M(1),
where

M(1)x,t;x′,t′ =
kβ

Nt
δt,t′

2̂∑
ν̂=1̂

(δx′,x+ν̂ + δx′,x−ν̂)− δx,x′δt−1,t′

+ δx,x′δt,t′exp

[√
Uβ

Nt
σx,t − (U − µ)

β

Nt

]
.

(16)

Using M(1) we expect corrections of order 1/Nt.
The integrals over the Grassmann variables may be

performed, and from equations (14−15) we get

Z =

∫ ∏
x,t

[dσx,t] e
− 1

2

∑
x,t σ

2
x,t (detM)2

. (17)

As detM =
(
detM†

)
one has (detM)

2
= det

(
M†M

)
,

which is useful for the construction of the algorithm.
For the observables of interest, listed in equations (3,

6−8), the following expressions follow in the absence of a
magnetic field (explicit use of the up-down spin symmetry
has been made).

〈n〉 = 2− 2〈M−1
x,Nt;x,1

〉, (18)

P (x− y) = δxy

[
1− 2

〈
M−1
x,Nt;x,1

〉]
+ 2

〈(
M−1
x,Nt;y,1

)2
〉
, (19)

χ(x− y)

β
= 2δxy〈M

−1
x,Nt;x,1

〉

− 2〈M−1
x,Nt;y,1

M−1
y,Nt;x,1

〉, (20)

C(x− y) = 2δxy
〈
M−1
x,Nt;x,1

〉
+ 4− 8

〈
M−1
x,Nt;x,1

〉
+ 4

〈
M−1
x,Nt;x,1

M−1
y,Nt;y,1

〉
− 2

〈
M−1
x,Nt;y,1

M−1
y,Nt;x,1

〉
. (21)

Note the time labels (Nt,1), rather than, say, (1,1), ap-
pearing in the matrix elements associated with operators
all taken at the same time t = 1. In deriving these ex-
pressions, we closely followed Creutz [11]. In particular,
his analysis shows that while one would expect 〈M−1

x,1;x,1〉
for 〈n/2〉, equation (18) is the correct expression to use in
order not to spoil the order 1/N2

t accuracy which is looked
for. We actually verified that at zero chemical potential,
the estimate (18) gives an answer much closer to 〈n〉 = 1
than the other one.

We will also consider the average value of the field σ′x
defined as

σ′x,t =

√
Nt

β
σx,t. (22)
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Indeed, from the equation of motion for the
σ-fields, which can easily be derived from equation (14),
we have

lim
Nt→∞

〈
σ′x,t

〉
=
√
U 〈n〉 . (23)

This relation will be also used as a check that we actually
considered large enough Nt values.

3 The numerical simulation

The expectation values of (18-22) are obtained from σ-
field configurations corresponding to the partition func-
tion (17). These configurations are generated with an Hy-
brid Monte-Carlo algorithm (HMC-algorithm) which is a
widely used tool to simulate systems involving fermions
(e.g. [8–13]). Its main virtues are that it is an exact algo-
rithm and that, at least in principle, the computer time
grows slowly with system size.

Introducing one set of pseudofermion fields φ(i) for
each species η and θ and momenta p conjugate to the
σ fields, the Hamiltonian of the system can be written as

H =
1

2

∑
j

p2
j +

1

2

∑
j

σ2
j +

2∑
i=1

∑
j,k

φ
(i)
j

(
M†M

)−1

jk
φ

(i)
k ,

(24)

where j and k denote sites on the N2
s ×Nt lattice. Starting

from a configuration σ, a new configuration is obtained in
three steps.

i) First the pseudofermion fields are generated from
Gaussian distributed vectors r(i) by φ(i) = M†(σ)r(i)

and Gaussian momenta p are chosen.
ii) Then σ and p are updated by molecular dynamics with
H as Hamiltonian, the set of Hamilton’s equations be-
ing solved with a discrete time step dτ . So H is a con-
stant of motion in the limit dτ → 0. The integration
of the molecular dynamics equation is performed by a
leapfrog method [12]

σj |(n+1)dτ = σj |ndτ + dτ pj −
(dτ)2

2

∂H

∂σj

∣∣∣∣
ndτ

, (25)

pj |(n+1)dτ = pj |ndτ −
dτ

2

(
∂H

∂σj

∣∣∣∣
ndτ

+
∂H

∂σj

∣∣∣∣
(n+1)dτ

)
.

(26)

iii) After nMD steps, the move to the resulting σ config-
uration is accepted or refused by a Metropolis test.
In both cases, one restarts at step i) with either the
accepted configuration or the old one respectively.

This algorithm introduces two parameters, the number
of steps nMD and the step size dτ . The correlation be-
tween configurations decreases when the trajectory length
τ = nMDdτ increases, while increasing nMD increases the
computation time and increasing dτ decreases the accep-
tance. We have taken τ ∼ 1.0, (more precisely between 0.8

and 1.6) with nMD such that a large enough acceptance is
reached for all the volumes used (the acceptance decreases
with increasing volume [11,12]). This is obtained with
nMD ∼ 4βU . We also tested trajectories with Poisson-
distributed lengths, i.e. nMD distributed around a certain
mean value and dτ held fixed [16,17]. This does not decor-
relate measurements of observables compared to τ fixed.
The only effect is to increase the acceptance by a few per-
cent if nMD is small.

For an observable O whose value at Monte-Carlo time
i is Oi the autocorrelation function is

CO(t) =
〈OiOi+t〉 − 〈Oi〉

2

〈O2
i 〉 − 〈Oi〉

2 , (27)

where 〈 〉 means the average over Monte-Carlo time i. We
estimated the autocorrelation time ξO by

ξO =
1

tc

tc−1∑
0

ln

[
CO(t)

CO(t+ 1)

]
, (28)

disregarding the noisy region t > tc where tc is the smallest
t value such that CO(t) is less than 0.05. This gives the
exact autocorrelation time if CO is purely exponential.
The integrated autocorrelation time

tint =
tc−1∑

0

CO(t), (29)

coincides with ξO within 5% under the same assumption.
The physical and algorithmic parameters are given in

Tables 1 and 2 along with the number of trajectories sim-
ulated, the autocorrelation time ξσ′ and the acceptance.
Here ξσ′ denotes the autocorrelation length for the lat-
tice average of the σ′ field. It is computed automatically
and may be occasionally overestimated due to large noise
to signal ratio around t = tc. It is found quite large, in
fact much larger by at least one order of magnitude than
those measured for the observables built from the inverse
fermion matrix equations (18−21). Because any measure-
ment of physical quantities is uniquely determined by the
data of a particular σ configuration, we conservatively con-
sider ξσ′ as a safe scale to appreciate the length of MC runs
while keeping the other autocorrelation times for error es-
timating (we do not know what QMC simulations obtain
for the analogous quantity, with the σ fields replaced by
Ising variables, expressed in number of sweeps through the
lattice).

The updates of σj and pj (Eqs. (25, 26)) require twice

the computation of a vector u =
(
M†M

)−1
φ for a given

φ. This computation, which costs most of the computer
time, is performed by a conjugate gradient subroutine with
a diagonal preconditioning [18], which speeds up the con-
vergence considerably. The conjugate gradient iteration is
stopped after ccg steps, when the iterative rest r2

ccg be-

comes less than 10−10|φ|2.
The number ccg of conjugate-gradient iterations can be

significantly reduced if we use for u0 the value obtained
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Table 1. Parameters of the simulations performed at U = 4.
Also given are the number of trajectories generated, the σ′ field
autocorrelation time ξσ′ and the acceptance.

Lattice U β −µ τ nMD Traj. ξσ′ Acc.

42×16 4 1 0.15 1.6 16 19270 37 0.99

42×8 4 1 0.15 1.6 16 20000 23 0.99

62×8 4 1 0.15 1.6 16 20000 21 0.98

42×16 4 1 0.0 1.6 16 19160 38 0.99

42×8 4 1 0.0 1.6 16 20000 23 0.99

62×16 4 1 0.0 1.6 16 20000 36 0.98

62×8 4 1 0.0 1.6 16 20000 22 0.98

42×16 4 2 0.15 1.6 32 12500 33 0.98

42×16 4 2 0.0 1.6 32 12500 33 0.98

42×24 4 3 0.15 1.6 48 12250 81 0.95

42×24 4 3 0.0 1.6 48 12500 54 0.95

42×32 4 4 0.6 0.8 64 22500 91 0.99

42×32 4 4 0.45 0.8 64 22210 191 0.99

62×32 4 4 0.45 1.6 64 20970 43 0.85

62×32 4 4 0.2 1.6 64 43340 158 0.83

42×32 4 4 0.15 0.8 64 19800 290 0.98

62×32 4 4 0.15 1.6 64 20220 67 0.82

82×32 4 4 0.15 1.6 64 18490 126 0.71

62×32 4 4 0.1 1.6 64 20530 50 0.82

42×32 4 4 0.0 0.8 64 19960 228 0.98

42×64 4 4 0.0 1.6 64 20000 121 0.94

62×32 4 4 0.0 1.6 64 20270 82 0.84

42×64 4 6 0.45 1.2 96 10000 127 0.98

62×64 4 6 0.45 1.2 96 9200 109 0.88

42×64 4 6 0.3 1.2 96 12500 292 0.96

62×64 4 6 0.3 1.2 96 12500 146 0.87

62×64 4 6 0.23 1.2 96 12500 170 0.85

42×64 4 6 0.15 1.2 96 19300 335 0.96

62×64 4 6 0.15 1.2 96 12500 565 0.85

82×64 4 6 0.15 1.2 96 8200 250 0.64

42×64 4 6 0.08 1.2 96 20000 743 0.96

42×64 4 6 0.0 1.2 96 12500 185 0.97

62×64 4 6 0.0 1.2 96 10000 179 0.85

at the previous molecular dynamics step. However this
method leads to a decrease of the acceptance when in-
creasing β and V , associated with uncontrolled biases. So
we always start with u0 = 0, in such a way that no pecu-
liar direction of phase space is favored or suppressed by
the rounding off errors.

The value of ccg needed to reach the prescribed ac-
curacy ranges between ∼ 30% and ∼ 65% of the vector
length. However in some cases, this accuracy is not ob-
tained in N2

s × Nt iterations, in particular for small vol-
umes. Such situations can be avoided by reducing the tra-
jectory length τ , and this explains the values τ = 0.8 and
1.2 in Table 1. Of course, this comes with the price of
increasing the σ autocorrelation times.

The above behaviours of ccg apparently contradict tho-
se reported in [10], where the dependences on the pa-
rameters N2

s , U and β are found very weak. In fact, we
can obtain similar performances, although using poorer

Table 2. Parameters of the simulations performed at U = 2
and 8. Also given are the number of trajectories generated, the
σ′ field autocorrelation time ξσ′ and the acceptance.

Lattice U β −µ τ nMD Traj. ξσ′ Acc.

42×8 2 1 0.0 1.6 8 20000 13 0.98

42×16 2 2 0.0 1.6 16 9230 15 0.98

62×32 2 4 0.15 1.6 32 16140 18 0.96

62×16 2 4 0.15 1.6 32 47000 13 0.90

62×32 2 4 0.0 1.6 32 47180 20 0.96

62×16 2 4 0.0 1.6 32 38000 13 0.90

62×24 2 6 0.3 1.6 48 17780 13 0.84

62×24 2 6 0.15 1.6 48 16810 28 0.79

62×24 2 6 0.0 1.6 48 23420 24 0.77

62×32 8 0.5 0.15 1.6 16 20700 240 0.99

62×32 8 0.5 0.0 1.6 16 20500 162 0.99

62×32 8 2.0 0.15 1.6 64 12612 1237 0.95

62×32 8 2.0 0.0 1.6 64 18855 782 0.94

preconditioning, by replacing our stopping criterion
r2
ccg < 10−10|φ|2 by the less demanding r2

ccg < 4× 10−6 V

set in [10]. This we understand as follows. As a function
of the number n of iterations, the rest r2

n generically ex-
hibits two successive regimes. The first is rather slow, until
n reaches a crossover value ncr, beyond which fast conver-
gence shows up. We observe that most of the dependence
on the parameters resides in that of ncr. Thus if the stop-
ping criterion is chosen above r2

ncr , ccg remains roughly
parameter independent, while achieving true convergence
requires reaching ncr, which is more and more costly.

In order to keep control on the effect of finite Nt values,
we first compared results obtained with different Nt both
with the matrix M of equation (15) and its truncated
form M(1), equation (16). Table 3 shows some of these

data, taken at µ = 0, U = 4 on a 42 lattice. In agreement
with the expectations discussed in Section 3, we do observe
that 〈σ′〉 and 〈n〉 approach their exact asymptotic values
2 and 1 respectively, at a rate compatible with O(1/Nt)
whenM(1) is used, while M already provides good answers

in the same Nt ranges. The pairing P̃0 is less sensitive to
these various changes. This is not so for the susceptibility,
which increases substantially with Nt. We attribute this
sensitivity to the occurrence of important cancellations in
building up χ̃, between a large positive contribution of
χ(x− y = 0) and the sum of negative contributions from
χ(x− y 6= 0).

Because increasing Nt is costly in computer time, we
used Nt = 2βU . Exceptions concern the case β = 0.5,
U = 8 (Nt = 32) and the low temperature points β = 6,
U = 4 (Nt = 64). In order to verify that these values of
Nt are large enough, we made further runs with higher
Nt values at U = 4. The comparison is summarized in
Table 4.

The results for different Nt values are in general agree-
ment with each other. However, differences well outside
the errors quoted appear for χ̃ and S1, which both increase
with Nt. With an approach to asymptotics expected of
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Table 3. Comparison of data taken with the fermionic matrix to order 1 and 2 in 1/Nt. See equations (16, 15) respectively.

Lattice U β µ order 〈σ′〉 〈n〉 /2 P̃0 χ̃× 10

42×16 4 1 0.0 1 1.76(1) 0.468(2) 1.060(2) 1.406(3)

42×48 4 1 0.0 1 1.94(2) 0.492(4) 1.060(3) 1.398(3)

42×8 4 1 0.0 2 2.05(2) 0.501(4) 1.071(4) 1.301(8)

42×16 4 1 0.0 2 1.96(3) 0.490(5) 1.062(5) 1.390(9)

42×32 4 4 0.0 1 1.34(2) 0.401(3) 2.20(3) 0.81(1)

42×64 4 4 0.0 1 1.66(3) 0.451(6) 2.27(6) 0.79(2)

42×32 4 4 0.0 2 2.11(4) 0.514(4) 2.37(9) 0.51(2)

42×64 4 4 0.0 2 1.98(3) 0.495(5) 2.55(9) 0.71(2)

Table 4. Comparison of data taken at different Nt values.

Lattice U β −µ 〈σ′〉 〈n〉 /2 P̃0 χ̃× 10 S1

42×16 4 1 0.15 1.81(3) 0.453(5) 1.062(5) 1.379(9) 0.264(2)

42×8 4 1 0.15 1.90(2) 0.463(4) 1.072(4) 1.289(8) 0.250(2)

42×16 4 1 0.0 1.96(3) 0.490(5) 1.062(5) 1.390(9) 0.266(2)

42×8 4 1 0.0 2.05(2) 0.501(4) 1.071(4) 1.301(8) 0.252(2)

62×16 4 1 0.0 2.02(2) 0.501(3) 1.072(7) 1.382(8) 0.267(1)

62×8 4 1 0.0 2.03(2) 0.496(3) 1.075(6) 1.313(8) 0.255(1)

42×64 4 4 0.0 1.98(3) 0.495(5) 2.55(9) 0.71(2) 0.244(2)

42×32 4 4 0.0 2.11(4) 0.514(4) 2.37(9) 0.51(2) 0.230(4)

62×96 4 6 0.0 2.04(4) 0.505(1) 3.2(2) 0.37(3) 0.251(5)

62×64 4 6 0.0 2.01(3) 0.493(2) 3.8(2) 0.36(3) 0.235(4)

order (β/Nt)
2 this does not affect the physical discussion

given below. No general trend can be deduced from these

data for P̃0. We cannot exclude that the choice Nt = 2βU ,
although it seems to be the standard one in similar in-
vestigations, is not large enough. Warnings about possi-
ble pathologies at low temperatures for certain correlation
functions have been addressed by Fye and Scalettar [16]
and one may find references to observed anomalies therein.
Note that at β = 6, U = 4, we used more conservative val-
ues.

The results obtained for 〈σ′〉, filling of the band 〈n〉 /2,

pairing correlation P̃0, spin susceptibility χ̃ and single oc-
cupation probability S1 for various lattices and values of
the inverse temperature β and chemical potential µ are
given in Tables 5 and 6. The errors reported therein are
calculated by incorporating the autocorrelation time tint
of equation (29) by using a variance which is the naive
variance multiplied by (1 + 2tint).

Comparing our results for P̃0 at U = 4 (Tab. 5) with
those of [5] shows the existence of some discrepancy at low
temperature, especially at β = 6. This is discussed in the
next section, where in particular a more refined analysis
of the numerical output is presented.

4 The S-wave pair-field correlation function

One of the observables of interest in the context of a su-
perconducting phase transition is the pairing correlation

function P and its Fourier transform P̃ . They are defined

by (6) and (11) respectively. In the present work we have
studied the q = (0, 0) equal-time s-wave pair-field correla-

tion function P̃0, equation (12), which has previously been
examined e.g. in [4,5]. For this quantity we obtain from
equation (19)

P̃0 = 1− 2
〈
M−1
x,Nt;x,1

〉
+ 2

∑
y

〈(
M−1
y,Nt;x,1

)2
〉
. (30)

We first discuss the expected behaviour of P̃0, then com-
ment on peculiar features encountered in data analysis,
and finally present our interpretation of the results, com-
paring them with previous works.

4.1 Expected dependences on µ, T, U and Ns

Let us recall [4,5] what can be expected on general

grounds for the behavior of P̃0 as a function of β, U , µ
and Ns, the linear size of the lattice.

A first remark is that under a global particle-hole
transformation

ax → (−)xa†x (31)

bx → (−)xb†x (32)

which changes H(µ) of equation (1) into H(−µ), up to
an irrelevant additive constant, the operator defining P in
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Table 5. Data obtained on various lattices at U = 4: 〈σ′〉, filling of the band 〈n〉 /2, pairing correlation P̃0, spin susceptibility
χ̃ and single occupation probability S1 for different values of the inverse temperature and of the chemical potential.

Lattice U β −µ 〈σ′〉 〈n〉 /2 P̃0 χ̃× 10 S1

42×8 4 1 0.15 1.90(2) 0.463(4) 1.072(4) 1.289(8) 0.250(2)

42×8 4 1 0.0 2.05(2) 0.501(4) 1.071(4) 1.301(8) 0.252(2)

62×8 4 1 0.15 1.91(1) 0.463(2) 1.079(7) 1.300(8) 0.253(1)

62×8 4 1 0.0 2.03(2) 0.496(3) 1.075(6) 1.313(8) 0.255(1)

42×16 4 2 0.15 1.81(3) 0.440(5) 1.64(2) 1.16(2) 0.240(2)

42×16 4 2 0.0 2.02(3) 0.494(4) 1.63(3) 1.18(2) 0.244(2)

42×24 4 3 0.15 1.81(3) 0.435(3) 2.18(5) 0.85(3) 0.234(2)

42×24 4 3 0.0 2.10(3) 0.509(6) 2.23(5) 0.87(2) 0.242(2)

42×32 4 4 0.6 1.31(2) 0.309(1) 2.47(7) 0.45(2) 0.226(4)

42×32 4 4 0.45 1.40(3) 0.335(2) 2.6(1) 0.46(2) 0.234(1)

42×32 4 4 0.15 1.87(6) 0.45(1) 2.40(6) 0.55(2) 0.234(4)

42×32 4 4 0.0 2.11(4) 0.514(4) 2.37(9) 0.51(2) 0.230(4)

62×32 4 4 0.45 1.38(1) 0.329(1) 3.0(1) 0.72(1) 0.226(1)

62×32 4 4 0.2 1.74(2) 0.422(2) 2.87(5) 0.697(9) 0.234(1)

62×32 4 4 0.15 1.83(2) 0.443(2) 3.1(1) 0.68(1) 0.232(2)

62×32 4 4 0.1 1.92(1) 0.468(2) 3.1(2) 0.71(1) 0.234(1)

62×32 4 4 0.0 2.06(2) 0.501(3) 3.05(9) 0.75(1) 0.239(1)

82×32 4 4 0.15 1.86(2) 0.449(2) 2.85(8) 0.72(1)

42×64 4 6 0.45 1.31(3) 0.321(2) 2.38(8) 0.14(2) 0.246(6)

42×64 4 6 0.3 1.41(4) 0.344(2) 2.9(1) 0.22(2) 0.242(6)

42×64 4 6 0.15 1.61(4) 0.396(3) 3.3(2) 0.23(2) 0.234(4)

42×64 4 6 0.08 1.86(6) 0.460(7) 2.58(9) 0.18(1) 0.222(4)

42×64 4 6 0.0 2.03(4) 0.503(7) 2.57(9) 0.17(2) 0.236(6)

62×64 4 6 0.45 1.32(2) 0.322(2) 4.0(3) 0.38(3) 0.224(6)

62×64 4 6 0.3 1.46(2) 0.359(1) 4.2(2) 0.37(4) 0.240(4)

62×64 4 6 0.23 1.62(2) 0.396(1) 4.2(2) 0.42(2) 0.244(4)

62×64 4 6 0.15 1.83(5) 0.452(2) 3.9(3) 0.31(2) 0.238(4)

62×64 4 6 0.0 2.01(2) 0.493(2) 3.8(2) 0.36(3) 0.236(4)

82×64 4 6 0.15 1.75(3) 0.429(1) 4.9(4) 0.49(3) 0.242(2)

Table 6. Data obtained on various lattices at U = 2 and 8. As in Table 5.

Lattice U β −µ 〈σ′〉 〈n〉 /2 P̃0 χ̃× 10 S1

42×8 2 1 0.0 1.45(1) 0.502(2) 0.886(1) 2.114(4) 0.3738(8)

42×16 2 2 0.0 1.42(2) 0.497(3) 1.127(4) 2.46(1) 0.373(1)

62×32 2 4 0.15 1.268(7) 0.438(1) 1.46(1) 2.55(1) 0.3732(8)

62×32 2 4 0.0 1.453(4) 0.504(1) 1.445(7) 2.727(9) 0.3746(4)

62×24 2 6 0.3 1.153(4) 0.3747(8) 1.99(2) 1.30(2) 0.3446(6)

62×24 2 6 0.15 1.340(8) 0.440(2) 2.20(6) 1.69(2) 0.3444(8)

62×24 2 6 0.0 1.605(6) 0.531(2) 2.10(3) 1.86(2) 0.346(1)

62×32 8 0.5 0.15 2.69(7) 0.475(8) 0.948(3) 0.667(5) 0.174(2)

62×32 8 0.5 0.0 2.88(6) 0.509(8) 0.955(4) 0.661(5) 0.173(2)

62×32 8 2 0.15 2.3(2) 0.41(3) 1.9(1) 0.104(5) 0.079(2)

62×32 8 2 0.0 2.7(1) 0.47(2) 2.2(2) 0.116(5) 0.085(2)
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Fig. 1. Fraction of events with P̃0 > x as a function of x for
U = 4, β = 4 and µ = 0.

equation (6) remains unchanged. Hence

P̃0(µ) = P̃0(−µ), (33)

whereas the filling density satisfies

〈n〉 (µ) = 1− 〈n〉 (−µ). (34)

In the vicinity of µ = 0, and above any transition tempera-
ture which could lead to non-analyticities, we thus expect

P̃0 to be a function of µ2, while 〈n〉 (µ) is linear in µ.
At µ = 0, because of the SU(2)′ symmetry, no tran-

sition may occur at T 6= 0, and as T → 0, P̃0 and the
correlation length ξ are expected to diverge according to

ξ ∝ exp (A/T ) (35)

P̃0 = b exp (a/T ) ∝ ξ2. (36)

At µ 6= 0, the SU(2)′ symmetry is broken down to a U(1)
symmetry associated with the particle number, which can
lead to a finite T transition of the Kosterlitz-Thouless [2]
type. Then the expectation is, above the critical temper-
ature TKT ,

ξKT ∝ exp
[
A/
√
T − TKT (µ,U)

]
(37)

and

P̃0 = b exp
[
a/
√
T − TKT (µ,U)

]
∝ ξ2−ηKT

KT , (38)

with ηKT = 0.25. Of course a = (2 − ηKT )A and b are
functions of µ and U . Also T dependent prefactors may
occur in these expressions. But it is reasonable to think

that the µ,U dependences of ξKT and P̃0 are dominated
by that of T − TKT .

Table 7. P̃0 values obtained at U = 4, µ = 0 and µ = −0.15:
P̃ stand0 as in Table 5 and P̃ cor0 the corrected values according
to the analysis of Section 4.2.

Lattice U β −µ P̃ stand
0 P̃ cor

0 ν

42×8 4 1 0.15 1.072(4) 1.073(5) ≥ 1.9

42×8 4 1 0.0 1.071(4) 1.072(4) ≥ 1.9

62×8 4 1 0.15 1.079(7) 1.080(7) ≥ 1.9

62×8 4 1 0.0 1.075(6) 1.078(7) ≥ 1.9

42×16 4 2 0.15 1.64(2) 1.64(2) ≥ 1.8

42×16 4 2 0.0 1.63(3) 1.63(3) ≥ 1.8

42×24 4 3 0.15 2.18(5) 2.21(6) ≥ 1.8

42×24 4 3 0.0 2.23(5) 2.24(8) ≥ 1.8

42×32 4 4 0.15 2.40(6) 2.5(2) [1.55-1.75]

42×32 4 4 0.0 2.37(9) 2.4(3) [1.55-1.75]

62×32 4 4 0.15 3.1(1) 3.2(2) [1.55-1.75]

62×32 4 4 0.0 3.05(9) 3.2(2) [1.55-1.75]

82×32 4 4 0.15 2.85(8) 2.9(2) [1.55-1.75]

42×64 4 6 0.15 3.3(2) 3.7(4) [1.25-1.35]

42×64 4 6 0.0 2.57(9) 3.1(4) [1.25-1.35]

62×64 4 6 0.15 3.9(3) 4.6(7) [1.25-1.35]

62×64 4 6 0.0 3.8(2) 4.4(6) [1.25-1.35]

82×64 4 6 0.15 4.9(4) 5.8(6) [1.25-1.35]

In a finite system of size N2
s , standard scaling argu-

ments predict a behavior

P̃0,Ns ' N
2
s f(Ns/ξ) at µ = 0, (39)

and

P̃0,Ns ' N
2−ηKT
s f(Ns/ξKT ) at µ 6= 0 (40)

for the pair correlation, in a domain of parameters β, µ, U
where the ξ’s are large, and Ns/ξ is kept fixed.

On the basis of numerical QMC simulations of the
model, reference [5] confirmed this overall picture and con-
cluded that a maximum transition temperature of order
0.2 is reached for U ' 8 and 〈n〉 ' 0.85, while at U = 4
the critical temperature TKT is of order 0.1 and 0.05 re-
spectively at 〈n〉 = 0.87 and 0.5. A study of TKT as a
function of U and 〈n〉 is performed in [19]. There, the
helicity modulus is calculated in the BCS framework (an
approach which may be questioned when U is not small),
and its relationship with the transition temperature in a
KT-like transition is exploited. Values of TKT much higher
than in [5] are found. After refining our analysis of the nu-

merical data for P̃0, we will reexamine the question.

4.2 Observed properties and analysis of our HMC
data

The average values and statistical errors given in Tables 5
and 6 were obtained via the quite standard methods in-
dicated at the end of Section 3. In these treatments it is
implicitly assumed that the distribution fO of an observ-
ableO admits a finite variance v = 〈O2〉−〈O〉2, so that the
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Fig. 2. Fraction of events with σ > x as a function of x for
U = 4, β = 4 and µ = 0.

statistical error associated with N independent measure-
ments is δO ∼ (v/N)1/2, in the large N limit. In the case

of P̃0, especially at low temperature, such a behaviour was
not clearly observed, and the existence of a very large tail

in the P̃0 distribution made us suspicious about the above

property being valid. Note that here P̃0 is a shorthand
notation for the random σ–dependent variable whose ex-
pectation value is taken in equation (30). Figure 1 shows

the measured probability for finding P̃0 > x in N events
on a 62 × 32 lattice, for β = 4, U = 4 and µ = 0, namely
the log-log plot versus x of

fP (x) =
1

N

(
# events with P̃0 > x

)
. (41)

The errors are estimated from the fluctuations observed
amongst 10 bins. In contrast with the similar data for σ′

shown in Figure 2, where fσ falls down abruptly above
x = 〈σ′〉 ∼ 2, there is a sizable probability for finding

P̃0 � 〈P̃0〉, moreover compatible with

fP (x) =
c

ν
x−ν at large x, with 1 < ν < 2, (42)

in which case the variance does not exist. The P distri-
bution is said to be in the attraction basin of a Lévy law
(see e.g. [20] and references therein). In order to appreci-

ate the effect of this behaviour on our estimates of P̃0 and
of its error, let us now assume the distribution fP to be
given by equation (42) for x > xc. Then if K events are
observed below xc, we have that (N −K)/N = c/νx−νc ,
which fixes c, given xc and ν, and gives the estimate

〈P̃0〉(xc) =
1

N

∑
Pi<xc

Pi +
N −K

N

ν

ν − 1
xc. (43)

If the assumption (42) is valid and ν properly chosen, the
estimate (43) must be independent of xc provided xc is
large enough and enough events are observed for x > xc.

-0.6 -0.4 -0.2 0.0
1

2

3

4

5
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β=4
β=6
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~

Fig. 3. P̃0 as a function of µ for U = 4 (values from Tab. 5).

Within our statistics, this requirement was not sufficient
to determine ν accurately, but we consistently found a
range of ν values for which (43) provides a plateau at large
xc. For ν at the central value of this range, we take the

height of the plateau as a corrected estimate P̃ cor0 of P̃0,
and associate an error, which includes the statistical jack-
knife error and the effect of varying ν within the accepted
range.

For U = 4, µ = 0.0 and−0.15, and various lattice sizes,

P̃ cor0 is compared in Table 7 with P̃ stand0 , the estimate pre-

viously obtained by standard method. We find P̃ cor0 >

P̃ stand0 , with a difference which becomes significant at
β = 6, although the errors are larger. In no case how-
ever is the effect sufficient to make our low temperature
results compatible with those of [5].

We do not know the reason for the unconventional be-
haviour of fP observed with our algorithm. Being a sum

of squares of M−1 matrix elements, P̃0 gets large values
for configurations leading to small eigenvalues of M . As

already emphasized, we do observe very large P̃0 values.
However, it might happen that, in some configurations,
small eigenvalues are not compensated by large ones, lead-
ing to weights (detM)2 relatively small. Such configura-
tions are rejected (in any MC algorithm), although the

product P̃0× (detM)2 may contribute the functional inte-
gral the same amount as larger weight kept configurations.
(One may think of a MC computation of 〈1/x2〉 relative to
the weight x2 exp(−x2/2): a correct sampling of the x = 0
region will require enormous statistics.) A related ques-
tion raised by the vanishing of (detM)2 is that of frequent
enough tunneling between regions of configuration space
with opposite signs of detM [21,22]. We have computed
detM for some subsets of the accepted configurations, but
never found it negative. Conversely, configurations con-
structed by hand to yield it negative had small relative
weights.
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Fig. 4. P̃0 as a function of the temperature for
U = 4 and µ = −0.15. The solid curve is the fit to

P̃0 = b exp
[
a/(T − TKT )1/2

]
, the dashed curve is the fit to

P̃0 = b exp [a/T ]. The parameters are given in line 2 and 4 of
Table 8.

4.3 Analysis of results in terms of a KT transition

We will now discuss the results of our numerical HMC
simulations. We start with our results at U = 4, where we
have most of the data.

We first focus on the µ-dependence of P̃0, more con-
venient than its filling dependence because 〈n〉 (µ) suffers
from finite size effects which are not of the same nature
as those we are interested in, being important even in the
non interacting case for the Ns values commonly consid-
ered. At fixed T and U , the discussion of Section 4.1 in-

dicates that P̃0 is flat close to µ = 0, and should increase
with |µ| as a consequence of T − TKT (µ,U) decreasing,

a maximum of TKT leading to a maximum of P̃0 in the
same µ region. This qualitative behavior should survive in
a finite, large enough box provided the function f(x) of
equation (40), which is proportional to x−1.75 at large x,
stays monotonic.

In order to probe such a behavior, we select out from

our data of Table 5 the values of P̃0,Ns obtained at the
largest β (4 and 6) and Ns = 6 available for a sufficient
range of µ values. The result is shown in Figure 3. No
evidence is found for a maximum in µ within the explored
β range. In this we agree with the result of [5]. Hence there
is no indication that for such temperatures, the system
behaves differently at and off half–filling.

We may still examine the dependence of P̃0,Ns on Ns
at fixed µ, to see if these data give evidence for a KT
transition at µ 6= 0. We therefore fix µ at −0.15, a value
at which we have data in the range 1 ≤ β ≤ 6 and for
various Ns values in the 4-8 range.

In order to guess the relevant domain for the parame-
ters b, a, TKT of equations (35, 37), we first assume that
at each β the largest Ns value available is large enough for
the system to be close to its thermodynamical limit, an as-
sumption which is verified at β = 4 as seen from our data

at Ns = 4, 6, 8. Using the data P̃ cor0 of Table 7, we then
perform various fits to equations (35, 37), with the results
reported in Table 8. In lines 1, 3, 5, the 5 data points for
β between 1 and 6 are included. Although the first fit is
acceptable, we do not retain it as significant because the
rather low TKT value found is mainly determined by the
“high” temperature points β = 1 and 2. Keeping the 4
points β > 1, we test assumption (35) with TKT left free
in line 2 and fixed at 0.1 [5] in line 6. From this alone,
we thus find that TKT ∼ 0.1 is indeed consistent with our
data (despite the fact that they do not fully agree with
[5]). However, line 4 shows that the same data are equally
compatible with the ansatz (35), where no KT transition
is assumed to occur. The fits resulting from lines 2 and 4
are shown in Figure 4: a choice between the two curves is
clearly impossible. It is no surprise in fact since, as already
emphasized, no filling dependence has ever been observed
in the considered data range.

We next compare the size dependence of the data with
the finite size scaling expectations (40, 39). Parametrizing
ξ according to (38, 36) respectively with the parameters of
lines 2 and 4 of Table 8, we obtain the patterns shown in
Figures 5a,b. Since both figures may be considered as sug-
gestive of a scaling behavior, the evidence for a Kosterlitz-
Thouless transition at µ = −0.15 remains poor.

Similar conclusions follow from the same exercise ap-
plied to the data β ≤ 6 of [5]. Clearly lower temperatures
points, which we have not measured, and have not been
used in the finite size analysis of [5], are necessary to es-
tablish the existence of a KT transition, and to locate
it. In fact, the behaviour observed in [5] at β = 10 and
〈n〉 = 0.87 as a function of Ns is close to N1.3

s , not N1.75
s ,

expected from (37, 38, 40) with TKT ∼ 0.1, and sugges-
tive of a substantially smaller TKT . Varying TKT in the
range 0., 0.1 we find that the data of [5] at β =8 and 10
can be included in a reasonable scaling pattern only for
0 < TKT <∼ 0.04. For illustration, we show in Figure 6a
the result obtained with TKT = 0.03. In turn, we also find
that unlike the results at β ≤ 6, the lowest temperature
points lead to a less good agreement with the behaviour
(39) as shown in Figure 6b. This is in accordance with the

observation [5,6] that only at β = 10 P̃0 is larger at this
filling than it is at 1/2 filling.

Hence if we take into consideration all the existing nu-
merical information, our conclusion is: The evidence for a
KT transition is weak, and if it exists TKT is a few percent
of k.

We did not take enough data at U = 2 and U = 8 to
allow for an analysis similar to that achieved at U = 4.
A look at Table 6 however confirms that the pair cor-
relation increases with β at fixed [µ,U ], while its values
at µ = 0 and −0.15 are consistent with each other at

fixed [β, U ]. Some information comes from comparing P̃0

at U = 2, 4 and 8 for β = 2 and µ = 0 fixed. Its values are
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Fig. 5. Scaling of P̃0 according to equation (40) in (a) and to
equation (39) in (b) with parameter a and TKT from line 2 and
4 of Table 8.

respectively 1.127(4), 1.63(3) and 2.2(2). It would be in-
correct to directly infer from this that also the correlation
length increases. In fact, as U increases at fixed temper-
ature, more pairs are formed and this affects the normal-
ization of the correlation function. As a measure of this
normalization we take the x = y (zero distance) value of
the correlation of equation (6),

P (0) =
〈
a†xb
†
xbxax + bxaxa

†
xb
†
x

〉
, (44)

which is nothing but the average number densities of
doubly occupied and empty sites, related to the single
occupation probability S1, given in Tables 5 and 6, by
P (0) = 1−S1. Hence a better representative of the corre-

lation length variations is P̃0/P (0), and for this quantity
at β = 2, µ = 0, U = 2, 4, and 8 respectively we find
1.80(2), 2.18(4) and 2.4(2).

This leaves uncertain the guess that the correlation
length is larger at U = 8 than it is at U = 4. Anyway,
from the discussion for U = 4 we infer that no conclusion
about a KT transition can be drawn without low enough
temperature data, which are not available.

0 1 2 3 4
0

0:1

0:2

0:3

0:4

(a)

N
s
exp(

1

1:75
a=
p
T � TKT)

eP0N
�1:75

s

0 1 2 3 4 5 6
0

0:1

0:2

0:3

(b)

Ns exp(
1

2
a=T )

eP0N
�2
s

Fig. 6. Scaling of P̃0 from reference [5] according to equa-
tion (40) in (a) with a = 1.12 and TKT = 0.03 and according
to equation (39) in (b) with a = 0.38.

The above remark about the normalization of P̃0,
which might be important for a discussion of the U de-
pendence of the KT transition temperature, does not al-
ter our previous analysis at U = 4 fixed because, as seen
from Table 5, P (0) is essentially insensitive to β, µ and
Ns in the explored ranges. This is true even at tempera-
tures as high as 1 at U = 2 and 4. The largest variation
observed for P (0) is found between T = 0.5 and T = 2,
for U = 8, where it however does not exceed 10%. So, in
the U (and µ) range considered, the pairs are very robust
against temperature rises.

The independence of S1 on the filling for fixed U in
the region we investigated means that the increase in the
filling goes into the formation of pairs. This is, however,
also true in the free case in this region. This may be related

to the fact that S1, as well as P̃0, is an even function of µ.
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Table 8. Fits of P̃0 as a function of T for U = 4 and µ = −0.15. The point T = 1 is ignored in every second line. In the last
two lines, TKT=0.1 is imposed.

Fitting Function b a TKT Npts χ2/d.o.f.

b exp
[
a/
√
T − TKT

]
0.43(4) 0.9(1) 0.04(3) 5 1.5

0.6(1) 0.65(12) 0.085(25) 4 0.2

b exp [a/T ] 0.75(2) 0.37(2) 5 6.9

0.90(5) 0.30(3) 4 0.3

b exp
[
a/
√
T − 0.1

]
0.52(2) 0.69(3) 0.1 5 10.0

0.67(5) 0.57(5) 0.1 4 0.4

5 The static, uniform susceptibility:
Comparison of numerical results
with hopping parameter expansion

The static, uniform spin susceptibility χ̃ in the attractive
Hubbard model is known from some time [23,5] to ex-
hibit a very fast decrease as the temperature is lowered.
This feature has attracted attention, in connexion with its
potential relationship with the occurrence of a spin gap
[23] or of a pseudo-gap in the density of states [24], and
with the physics at intermediate coupling [25,24], where a
crossover from BCS to Bose-Einstein condensation is ex-
pected (for a review, see [26], a recent investigation can
be found in [27]).

In this section, we bring some additional information
on this behaviour of χ̃ extracted from its expansion in
the hoping parameter. We first explain the method, then
present and discuss the results obtained, comparing them
to those of the numerical simulations. The free energy of
the repulsive Hubbard model has been expanded in pow-
ers of the hopping parameter k by various authors [28–30,
3]. We start from the result of [3], where the expansion is
pushed to order 5 in k2. Via a particle-hole transforma-
tion on one of the two electron operators, the free energy
expansion is transformed into that relevant for the Hamil-
tonian in the attractive case equation (1). For arbitrary
values of β−1, µ and h respectively of the temperature,
chemical potential and external magnetic field, we end up
with the following truncated expansion (F is the negative
of β times the free energy density)

F (β, U, µ, h) ≡
1

V
lnZ +O(k12)

= logz +
5∑

κ=1

∑
{R}

v2κ

(βU)i
xiµyihwiwCκ;{R},

(45)

where

x = eβµ, y = eβh, w = exp

[
−
βU

2

]
v =

βk

z

z = 1 + xw (y + 1/y) + x2, (46)

and {R} represents the set of integers {i, iµ, ih, iw}.

Table 9. The ratios Aκ/A0 of the expansion of χ̃ in powers of
k2 for U = 4, µ = 0, β = 1 and 2.

κ 0 1 2 3 4 5

β = 1 1.0 0.580 −0.725 0.372 0.156 −0.497

β = 2 1.0 5.65 2.91 −17.6 −0.404 62.5

The symbol Cκ,{R} represents the 3836 non zero coeffi-

cients provided in [3], labeled by the order κ in k2 and the
associated set {R}. By differentiation with respect to µ
and h, one obtains similar series (here taken at zero mag-
netic field) for the filling density, the static uniform charge
density correlation and the static uniform spin suscepti-
bility. We focus on the latter, and study the truncated
series

1

β
χ̃(q = 0) =

(
y
d

dy

)2

F ≡
5∑

κ=0

Aκk
2κ. (47)

The coefficients Aκ follow from the expansion (45) of F .
Although it is not strictly speaking a high temperature
series, but a series in (βk2) with β-dependent coefficients,
extracting information from such short expansions at low
temperature is notoriously difficult [31].

An idea of the problem at hand is given by the follow-
ing examples. We take U = 4, µ = 0 and compute the
coefficients Aκ for β = 1 and 2. Their numerical ratios to
A0 are shown in Table 9.

One observes a quite discouraging pattern of orders
of magnitude and signs (remember we want to evaluate
χ̃ at k = 1). We tried to understand what happens by
starting from the free case U = 0, at µ = 0. The exact
susceptibility is given by

χ̃ = β

π∫
0

dp1dp2

π2

1

1 + cosh(2kβδp)
(48)

with

δp = −(cosp1 + cosp2). (49)

Its expansion in (βk)2 to 5th order is found to be

2χ̃

β
= 1 − (βk)2 +

3

2
(βk)4 −

85

36
(βk)6

+
1085

288
(βk)8 −

4837

800
(βk)10. (50)
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Fig. 7. χ̃/β as a function of β for different values of the cou-
pling U at µ = 0. See description in the text.

The signs alternate, but again the size of the coefficients in
k2 increases fast, the more so the temperature is lowered.
The origin of this blow up is clear from expression (48).
Rewriting it as

χ̃

β
=

2∫
0

dδρ(δ)
1

1 + cosh (2kβδ)
(51)

where ρ(δ) represents the density of states, and recalling
that ρ has only a logarithmic (van Hove) singularity at δ =
0, all singularities of χ̃ in k at finite distance are end point
(δ = 2) singularities. They are located at cosh(4kβ) = −1,
and the closest one, which fixes the radius of convergence,
is at (βk)2 = −π2/16. Hence the alternate signs in the
above series and also the fact that π2/16 times the ratio
|A5/A4| is very close to 1 (namely 0.990). Finally, we note
from the above integral that the most singular part of
χ̃/β is proportional to tanh(2βk)/(βk). This leads us to
perform the change of variable βk → u defined by

u = tanh (2βk) /(βk)− 2, (52)

and to re-expand χ̃/β in powers of u. We find

2χ̃

β
=1 +

3u

8
−

9u2

640
+

246u3

51469
−

4096u4

2238401
+

30034u5

40581943
+ · · ·

(53)

that is

2χ̃

β
' 1.0 + 0.375u− 1.41× 10−2u2 + 4.78× 10−3u3

− 1.83× 10−3u4 + 7.40× 10−4u5. (54)

The interval βk ≥ 0 is mapped onto −2 ≤ u ≤ 0, and
low temperatures mean u ∼ −2. Clearly this series in u
looks much more tractable than the original one. Indeed,
actual comparison of Padé approximants of (54) with the
exact result (48) shows that, up to β ∼ 10, the latter

can be approached with an accuracy better than 5%, an
achievement not expected from the series (50)!

In the absence of any information on the analytic
structure of χ̃ in k as the interaction is turned on, we
decided to perform the same change of variable (52) in all
cases and constructed the Padé approximants to the se-
ries in u. We observe that the [2,3] and [3,2] approximants
systematically lead to very similar results. Our results for
µ = 0 are collected in Figure 7, and compared with those
of the numerical simulation, as obtained with the largest
lattices which were simulated for each set of β, U values.
We now describe and comment this figure.

The upper (dotted) curve is the exact result in the free
case U = 0. The four continuous lines are the [2,3] Padé
results for respectively U = 0.1, 2, 4, 8, from top to bot-
tom. The lower (dashed) line is the “atomic” limit (k = 0)
drawn for U = 8. The statistical errors are smaller than
the size of the symbols representing our numerical results
for the largest available values of Ns, Nt. When compar-
isons can be made, our results are in general agreement
with published data [23,5,27].

The U = 0.1 curve is used as an overall check that the
whole series constructed from [3] is correctly implemented
and that the change of variable and Padé reconstruction
work close to the free case. For U = 2, excellent agreement
between series and data is obtained at β = 1 and 2. The
figure suggests that at β = 3, the series still gives a reason-
able answer, although lower than the true one by probably
10 to 15%. A similar departure shows up above β = 2 at
U = 4, and, say, β = 1.5 at U = 8. Hence the overall
pattern is that our treatment of the series gives good re-
sults at β values below a maximum which decreases as
U increases. Above this maximum, the Padé approximant
drops down rapidly the more so when U is large. It is in-
teresting to discuss this latter feature. Consider again the
case U = 8. The dashed line (k = 0) is the curve

χ̃

β
=

w

1 + w
, w = exp [−βU/2] , (55)

drawn for U = 8, thus falling down like exp [−4β]. One
observes that the Padé result at U = 8 drops down roughly
parallel to it above β = 2.

Inspection of the series for χ̃ reveals that all (known)
terms of its expansion in k2 contain at least one power of
w as a factor. So any truncation unavoidably leads to an
exponential fall off in β at fixed U , the more so when U
is large. This is what we observe with the series at hand,
while the numerical simulation indicates that, although
χ̃ actually decreases as β increases, it does so at a much
slower rate than naively expected. In other words, there
are collective effects which rather tend to maintain a siz-
able susceptibility, even though low temperature or/and
largeU favor the formation of local pairs, which contribute
zero to the total spin. We note that, as already mentioned
in the previous section, the probability for single occupa-
tion, S1 (as given in Tabs. 5 and 6) and thus the aver-
age local pair number 〈n/2〉−S1/2, depends weakly upon
temperature. Hence the decrease of χ̃ with T is not a
consequence (only) of pair formation at fixed U and 〈n〉.
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Fig. 8. χ̃ as a function of T for different values of the coupling
U at µ = 0. From top to bottom U = 4, 6, 8 and 12. See
description in the text.

Its sensitivity to U also is strong compared to that of
S1. These questions are of interest in connection with the
kind of regime (BCS-like or pair condensation) eventually
leading to a superconducting transition [5,23,27].

Our results show that, unlike popular approximations
such as RPA or T -matrix treatment, the series expansion
in k2 can be continued successfully down to fairly small T
values even at large coupling. In order to further illustrate
this point, we present our predictions for χ̃ as a function
of T for U = 4, 6, 8 and 12, at half filling (〈n〉 = 1), in
Figure 6. These predictions appear as solid lines when our
calculation is accurate (the minimum T ’s of the solid lines
are conservative guesses). We point out that by themselves
these results clearly expose the main features of physical
interest, namely the existence of a crossover from a smooth
regime at high T to a rapid fall off below a U dependent
T value. Furthermore, we observe that these χ̃ values are
quantitatively very close to that of [27] obtained numer-
ically at the same U values, but for 〈n〉 = 0.8. This en-
forces our general statement that there is no evidence for
any substantial dependence on filling.

6 Summary and conclusion

Motivated by the interest for strongly interacting sys-
tems of electrons in the context of high Tc materials, we
have performed an investigation of the attractive Hubbard
model.

Based on the hybrid Monte-Carlo method to simulate
the path integral representation of the partition function,
a numerical study provided us with estimates of the static

zero-momentum pair correlation P̃0 and spin susceptibil-
ity χ̃. The exploration covered the ranges [0.5, 6.0] for the
inverse temperature β and [2.0, 8.0] for the interaction
strength U in units of the hopping parameter k. At U = 4
we investigated in detail the dependence on the chemical
potential in order to study the sensitivity of these physi-
cal quantities to band filling, in the neighbourhood of half

filling. We also performed an analytical investigation of
the susceptibility, based on its expansion in k2 to order 5
derived from the results of [3] and on a specific Padé re-
summation technique inspired by the free case. We showed
that this method yields very good results for β . 1 at any
U , and β . 2 for U . 4.

In the numerical approach, the cost in computer time
leads to the consideration of rather small lattices only, and
also limits the number of time slices involved. The limita-
tion of the analytical approach is obviously due the trunca-
tion of the k2 expansion. Furthermore this expansion is not
available for the pair correlation. But it yields estimates
of χ̃ directly in the thermodynamical limit, so that the
two approaches are complementary and their comparison
brings valuable information. Whenever it was possible, we
also compared our numerical data with those of previous
investigations [5,4,27] performed using Quantum Monte-
Carlo. The overall agreement is good for most quantities
but we found significant and unresolved discrepancies for

P̃0 at our lowest T values.
Using pair correlations, the main question addressed

was that of the existence and location TKT of a Kosterlitz-
Thouless superconducting transition, the only possible
transition at finite temperature away from half filling. Our
results show very weak dependence on µ, hardly distin-
guishing half filling from other values of band filling in
the range between 0.8 and 1.0. In the temperature range
β ≤ 6, fits or finite size analysis relevant to a KT tran-
sition are consistent with a transition temperature which
may reach ∼ 0.1, the value proposed in [5], with a weak
dependence on filling, if any. However, they are compati-
ble as well with lower TKT values, and even with no finite
temperature transition at all, which must be the case at
1/2 filling. Including lower temperature data (β = 8 and
10 at 〈n〉 = 0.87 [5]) in the analysis, we then showed that
while they are incompatible with TKT ∼ 0.1, they favour a
KT transition below ∼ 0.04. Our analysis also shows that
a better understanding of the model requires a systematic
comparison of data taken at and off half-filling, at tem-
peratures below ∼ 1/8. In the mean time, any conclusion
on how TKT depends on U seems premature.

Our study of the magnetic susceptibility shows that
it depends very weakly on the band filling, but decreases
rapidly with increasing U and/or decreasing temperature,
in agreement with previous investigations [23,5,27]. In-
creasing U favors S-wave pair formation, reducing the
probability S1 of sites occupied by a single electron re-
sponding to a magnetic field. This explains the simulta-
neous decrease of χ̃ and S1 at fixed temperature. But at
fixed U , we observe that S1 stays approximately constant
in the low temperature range whereas χ̃ falls steeply. This
casts some doubt on the existence of a tight connection
between the static uniform susceptibility and pair forma-
tion as the expected transition is approached as claimed
in [27].
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